SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>MODIFIED OIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>MODIFIED OIL GLOSS, MODIFIED OIL MATT, MODIFIED OIL SATIN</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Finish for timber, parquetry, or cork flooring.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Urethane Coatings a division of Era Polymers Pty Ltd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>2-4 Green Street, Banksmeadow NSW 2019 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 (02) 9666 3888</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 (02) 9666 4805</td>
</tr>
<tr>
<td>Website</td>
<td>www.urethanecoatings.com.au</td>
</tr>
<tr>
<td>Email</td>
<td>george@urethanecoatings.com.au</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>CHEMWATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>1800 039 008</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>+612 9186 1132</td>
</tr>
</tbody>
</table>

CHEMWATCH EMERGENCY RESPONSE

<table>
<thead>
<tr>
<th>Primary Number</th>
<th>Alternative Number 1</th>
<th>Alternative Number 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800 039 008</td>
<td>1800 039 008</td>
<td>+612 9186 1132</td>
</tr>
</tbody>
</table>

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL, DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

| Poisons Schedule | 55 |
| Classification | Aspiration Hazard Category 1, Specific target organ toxicity - repeated exposure Category 1, Flammable Liquid Category 3 |

Label elements

<table>
<thead>
<tr>
<th>GHS label elements</th>
<th>DANGER</th>
</tr>
</thead>
</table>
Hazard statement(s)

- H304 May be fatal if swallowed and enters airways.
- H372 Causes damage to organs through prolonged or repeated exposure.
- H226 Flammable liquid and vapour.

Precautionary statement(s) Prevention

- P101 If medical advice is needed, have product container or label at hand.
- P102 Keep out of reach of children.
- P103 Read label before use.
- P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking.
- P233 Keep container tightly closed.

Precautionary statement(s) Response

- P301+P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
- P314 Get medical advice/attention if you feel unwell.
- P370+P378 In case of fire: Use alcohol resistant foam or normal protein foam for extinction.
- P314 Get medical advice/attention if you feel unwell.
- P310+P361+P353 IF ON SKIN (or hair): Remove/T ake off immediately all contaminated clothing. Rinse skin with water/shower.

Precautionary statement(s) Storage

- P403+P235 Store in a well-ventilated place. Keep cool.
- P405 Store locked up.

Precautionary statement(s) Disposal

- P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>64742-82-1.</td>
<td>10-30</td>
<td>naphtha petroleum, heavy, hydrodesulfurised</td>
</tr>
<tr>
<td>64742-95-6</td>
<td>10-30</td>
<td>naphtha petroleum, light aromatic solvent</td>
</tr>
<tr>
<td>Not Available</td>
<td>to 100</td>
<td>All other substances non hazardous</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion

If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness: i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casually can comfortably drink.
- Seek medical advice.
- Avoid giving milk or oils.
- Avoid giving alcohol.
- If spontaneous vomiting appears imminent or occurs, hold patient’s head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed
Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

For acute or short term repeated exposures to xylene:
- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 mL (xylene)/kg, intubation and lavage with a cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Index</th>
<th>Sampling Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylhippuric acids in urine</td>
<td>1.5 gm/gm creatinine</td>
<td>End of shift</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 mg/min</td>
<td>Last 4 hrs of shift</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

Special hazards arising from the substrate or mixture
- **Fire Incompatibility**
 - Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- If safe, switch off electrical equipment until vapour fire hazard removed.

Fire/Explosion Hazard
- Liquid and vapour are flammable.
- Moderate fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- Moderate explosion hazard when exposed to heat or flame.
- Vapour may travel a considerable distance to source of ignition.
- Combustion products include:
 - carbon monoxide (CO)
 - carbon dioxide (CO2)
 - other pyrolysis products typical of burning organic material.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
- See section 8

Environmental precautions
- See section 12

Methods and material for containment and cleaning up

Minor Spills
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.

Major Spills
- Clear area of personnel and move upward.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

continued...
Conditions for safe storage, including any incompatibilities

- **Suitable container**
 - Packing as supplied by manufacturer.
 - Plastic containers may only be used if approved for flammable liquid.
 - Check that containers are clearly labelled and free from leaks.
 - For low viscosity materials: (i) Drums and jerry cans must be of the non-removable head type. (ii) Where a can is to be used as an inner package, the can must have a screwed enclosure.
 - For materials with a viscosity of at least 2680 cSt. (23 deg. C)
 - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
 - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.

- **Storage incompatibility**
 - Xylenes:
 - may ignite or explode in contact with strong oxidisers, 1,3-dichloro-5,5-dimethylhydantoin, uranium fluoride
 - may attack some plastics, rubber and coatings
 - may generate electrostatic charges on flow or agitation due to low conductivity.
 - Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
 - Aromatics can react exothermically with bases and with diazo compounds.
 - Low molecular weight alkanes:
 - May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxgenyl tetrafluoroborate.
 - May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
 - Are incompatible with nitrogen tetrafluoroborate(1-), halogens and interhalogens.
 - May generate electrostatic charges, due to low conductivity, on flow or agitation.
 - Avoid flame and ignition sources.

- Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water.
- For alkyl aromatics:
 - The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidisation benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.
 - Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) - this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen.
 - Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
 - Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
 - Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>naphtha petroleum, heavy, hydrodesulphurised</td>
<td>White spirits</td>
<td>790 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, heavy, hydrodesulphurised</td>
<td>Stoddard solvent; (Mineral spirits, 85% nonane and 15% trimethyl benzene)</td>
<td>300 mg/m³</td>
<td>1,800 mg/m³</td>
<td>29500 mg/m³</td>
</tr>
<tr>
<td>naphtha petroleum, light aromatic solvent</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>All other substances non hazardous</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exposure controls

- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, grind, weld or perform similar operations on or near containers.
- Electrostatic discharge may be generated during pumping - this may result in fire.
- Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until pipe submerged) to twice:" its" diameter," then" is 97">.
- Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow clothing wet with material to stay in contact with skin.
- Store in original containers in approved flammable liquid storage area.
- Store away from incompatible materials in a cool, dry, well-ventilated area.
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access.

Continued...
Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Endorsement and/or isolation of emission source which keeps a selected hazard physically away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly.

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate imputants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience.

Skin protection

See Hand protection below

Hands/feet protection

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material cannot be calculated in advance and therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands.

Body protection

See Other protection below

Other protection

- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight weave non-static clothing (no metallic fasteners, cuffs or pockets).

- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot and shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms.

Thermal hazards

Not Available

Respiratory protection

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

Selection of the Class and Type of respirator will depend upon the level of breathing zone concentration present in air p.p.m. (by volume)

<table>
<thead>
<tr>
<th>Maximum gas/vapour concentration present in air p.p.m.</th>
<th>Half-face Respirator</th>
<th>Full-Face Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10</td>
<td>A-AUS / Class</td>
<td></td>
</tr>
<tr>
<td>up to 50</td>
<td></td>
<td>A-AUS / Class</td>
</tr>
<tr>
<td>up to 100</td>
<td></td>
<td>A-US / Class 1</td>
</tr>
<tr>
<td>up to 1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 50</td>
<td>A-US / Class 1</td>
<td></td>
</tr>
<tr>
<td>up to 1000</td>
<td>A-US / Class 1</td>
<td></td>
</tr>
<tr>
<td>up to 100</td>
<td>A-US / Class 1</td>
<td></td>
</tr>
<tr>
<td>up to 100</td>
<td>A-US / Class 1</td>
<td></td>
</tr>
<tr>
<td>100+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Continuous Flow
** Continuous-flow or positive pressure demand.
A (All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the: Forsberg Clothing Performance Index'. The effect(s) of the following substance(s) are taken into account in the computer-generated selection: MODIFIED OIL

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE/EVAL/PE</td>
<td>A</td>
</tr>
<tr>
<td>PVA</td>
<td>A</td>
</tr>
<tr>
<td>TEFILON</td>
<td>A</td>
</tr>
<tr>
<td>VITON</td>
<td>A</td>
</tr>
<tr>
<td>BUTYL</td>
<td>C</td>
</tr>
<tr>
<td>BUTYL/NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>HYALON</td>
<td>C</td>
</tr>
<tr>
<td>NAT+NEOPRE+NITRILE</td>
<td>C</td>
</tr>
<tr>
<td>NATURAL+NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE/NATURAL</td>
<td>C</td>
</tr>
<tr>
<td>NITRILE</td>
<td>C</td>
</tr>
<tr>
<td>NITRILE+PVC</td>
<td>C</td>
</tr>
<tr>
<td>PVC</td>
<td>C</td>
</tr>
<tr>
<td>PVDC/PE/PVDC</td>
<td>C</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index
A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation.

- Where the glove is to be used on a short term, casual or infrequent basis, factors such as feel or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

| Appearance | Clear, amber liquid |
SECTION 10 STABILITY AND REACTIVITY

Reactivity
- See section 7

Chemical stability
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions
- See section 7

Conditions to avoid
- See section 7

Incompatible materials
- See section 7

Hazardous decomposition products
- See section 5

SECTION 11 TOXICOCLOGICAL INFORMATION

Information on toxicological effects

Inhaled
- Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
- There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics.
- Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, irritability, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced.
- Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.
- Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal.
- On exposure to mixed trimethylbenzenes, some people may become nervous, tensed, anxious and have difficult breathing. There may be a reduction blood cells and bleeding abnormalities. There may also be drowsiness. Exposure to white spirit may cause nausea and vertigo.
- Headache, fatigue, tiredness, irritability and digestive disturbances (nausea, loss of appetite and bloating) are the most common symptoms of xylene overexposure. Injury to the heart, liver, kidneys and nervous system has also been noted amongst workers.
- Xylene is a central nervous system depressant

Ingestion
- Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)
- Accidental ingestion of the material may be seriously damaging to the health of the individual; animal experiments indicate that ingestion of less than 40 gram may be fatal.

Skin Contact
- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- There is some evidence to suggest that this material can cause inflammation of the skin in contact in some persons.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Eye
- There is some evidence to suggest that this material can cause eye irritation and damage in some persons.

Chronic
- Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.
- There is some evidence from animal testing that exposure to this material may result in toxic effects to the unborn baby.
- There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.
- Women exposed to xylene in the first 3 months of pregnancy showed a slightly increased risk of miscarriage and birth defects. Evaluation of workers chronically exposed to xylene has demonstrated lack of genetic toxicity.
- Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).
- Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.
- Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]
SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, light aromatic solvent</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>=6.14mg/L</td>
<td>1</td>
</tr>
<tr>
<td>naphtha petroleum, light aromatic solvent</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>3.29mg/L</td>
<td>1</td>
</tr>
<tr>
<td>naphtha petroleum, light aromatic solvent</td>
<td>EC10</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>1.13mg/L</td>
<td>1</td>
</tr>
<tr>
<td>naphtha petroleum, light aromatic solvent</td>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>=1mg/L</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend:
- Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information 3. Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means.
DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a landfill specifically licenced to accept chemical and/or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZCHEM</td>
<td><Y</td>
</tr>
</tbody>
</table>

Land transport (ADG)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1263</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
</tr>
</tbody>
</table>

Transport hazard class(es)

<table>
<thead>
<tr>
<th>Class</th>
<th>Subrisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Packing group

| III |

Environmental hazard

| Not Applicable |

Special precautions for user

<table>
<thead>
<tr>
<th>Special provisions</th>
<th>163 223 367</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited quantity</td>
<td>5 L</td>
</tr>
</tbody>
</table>

Air transport (ICAO-IATA / DGR)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1263</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)</td>
</tr>
</tbody>
</table>

Transport hazard class(es)

<table>
<thead>
<tr>
<th>ICAO/IATA Class</th>
<th>ICAO / IATA Subrisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

ERG Code

| 3L |

Packing group

| III |

Environmental hazard

| Not Applicable |

Special precautions for user

<table>
<thead>
<tr>
<th>Special provisions</th>
<th>A3 A72 A192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargo Only Packing Instructions</td>
<td>366</td>
</tr>
<tr>
<td>Cargo Only Maximum Qty / Pack</td>
<td>220 L</td>
</tr>
<tr>
<td>Passenger and Cargo Packing Instructions</td>
<td>355</td>
</tr>
<tr>
<td>Passenger and Cargo Maximum Qty / Pack</td>
<td>60 L</td>
</tr>
<tr>
<td>Passenger and Cargo Limited Quantity Packing Instructions</td>
<td>Y344</td>
</tr>
<tr>
<td>Passenger and Cargo Limited Maximum Qty / Pack</td>
<td>10 L</td>
</tr>
</tbody>
</table>

Sea transport (IMDG-Code / GGVSee)

<table>
<thead>
<tr>
<th>UN number</th>
<th>1263</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN proper shipping name</td>
<td>PAINT (including paint, lacquer, enamel, stain, shellac solutions, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)</td>
</tr>
</tbody>
</table>

Transport hazard class(es)

<table>
<thead>
<tr>
<th>IMDG Class</th>
<th>IMDG Subrisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Packing group

| III |

Environmental hazard

| Not Applicable |

Continued...
Special precautions for user

<table>
<thead>
<tr>
<th>EMS Number</th>
<th>F-E, S-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special provisions</td>
<td>163 223 367 955</td>
</tr>
<tr>
<td>Limited Quantities</td>
<td>5 L</td>
</tr>
</tbody>
</table>

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

NAPHTHA PETROLEUM, HEAVY, HYDRODESULFURISED (64742-82-1.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

<table>
<thead>
<tr>
<th>Australia Exposure Standards</th>
<th>Australia Inventory of Chemical Substances (AICS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Hazardous Substances Information System - Consolidated Lists</td>
<td>International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs</td>
</tr>
</tbody>
</table>

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT (64742-95-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Y</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Y</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:

Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>naphtha petroleum, heavy, hydrodesulfurised</td>
<td>64742-82-1, 8052-41-3, 1174921-79-9</td>
</tr>
<tr>
<td>naphtha petroleum, light aromatic solvent</td>
<td>64742-95-6, 25550-14-5</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC — TWA: Permissible Concentration-Time Weighted Average
PC — STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index